Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 289(16): 4704-4717, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34092034

RESUMO

Equipped with a plethora of secreted toxic effectors, protein secretion systems are essential for bacteria to interact with and manipulate their neighboring environment to survive in host microbiota and other highly competitive communities. While effectors have received spotlight attention in secretion system studies, many require accessory chaperone and adaptor proteins for proper folding/unfolding and stability throughout the secretion process. Here, we review the functions of chaperones and adaptors of three protein secretions systems, type 3 secretion system (T3SS), type 4 secretion system (T4SS), and type 6 secretion system (T6SS), which are employed by many Gram-negative bacterial pathogens to deliver toxins to bacterial, plant, and mammalian host cells through direct contact. Since chaperone and adaptor functions of the T3SS and the T4SS are relatively well studied, we discuss in detail the methods of chaperone-facilitated effector secretion by the T6SS and highlight commonalities between the effector chaperone/adaptor proteins of these diverse secretion systems. While the chaperones and adaptors are generally referred to as accessory proteins as they are not directly involved in toxicities to target cells, they are nonetheless vital for the biological functions of the secretion systems. Future research on biochemical and structural properties of these chaperones will not only elucidate the mechanisms of chaperone-effector binding and release process but also facilitate custom design of cargo effectors to be translocated by these widespread secretion systems for biotechnological applications.


Assuntos
Proteínas de Bactérias , Sistemas de Translocação de Proteínas , Animais , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Bactérias Gram-Negativas/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
2.
Microbiol Spectr ; 9(3): e0073921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937180

RESUMO

Antimicrobial resistance (AMR) has become a serious public and economic threat. The rate of bacteria acquiring AMR surpasses the rate of new antibiotics discovery, projecting more deadly AMR infections in the future. The Pathogen Box is an open-source library of drug-like compounds that can be screened for antibiotic activity. We have screened molecules of the Pathogen Box against Vibrio cholerae, the cholera-causing pathogen, and successfully identified two compounds, MMV687807 and MMV675968, that inhibit growth. RNA-seq analyses of V. cholerae after incubation with each compound revealed that both compounds affect cellular functions on multiple levels including carbon metabolism, iron homeostasis, and biofilm formation. In addition, whole-genome sequencing analysis of spontaneous resistance mutants identified an efflux system that confers resistance to MMV687807. We also identified that the dihydrofolate reductase is the likely target of MMV675968 suggesting it acts as an analog of trimethoprim but with a MIC 14-fold lower than trimethoprim in molar concentration. In summary, these two compounds that effectively inhibit V. cholerae and other bacteria may lead to the development of new antibiotics for better treatment of the cholera disease. IMPORTANCE Cholera is a serious infectious disease in tropical regions causing millions of infections annually. Vibrio cholerae, the causative agent of cholera, has gained multi-antibiotic resistance over the years, posing greater threat to public health and current treatment strategies. Here we report two compounds that effectively target the growth of V. cholerae and have the potential to control cholera infection.


Assuntos
Antibacterianos/farmacologia , Cólera/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas do Ácido Fólico/farmacologia , Vibrio cholerae/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/análogos & derivados , Trimetoprima/farmacologia , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
3.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161288

RESUMO

The type 6 secretion system (T6SS) is a bacterial weapon broadly distributed in gram-negative bacteria and used to kill competitors and predators. Featuring a long and double-tubular structure, this molecular machine is energetically costly to produce and thus is likely subject to diverse regulation strategies that are largely ill defined. In this study, we report a quantity-sensing control of the T6SS that down-regulates the expression of secreted components when they accumulate in the cytosol due to T6SS inactivation. Using Vibrio cholerae strains that constitutively express an active T6SS, we demonstrate that mRNA levels of secreted components, including the inner-tube protein component Hcp, were down-regulated in T6SS structural gene mutants while expression of the main structural genes remained unchanged. Deletion of both hcp gene copies restored expression from their promoters, while Hcp overexpression negatively impacted expression. We show that Hcp directly interacts with the RpoN-dependent T6SS regulator VasH, and deleting the N-terminal regulator domain of VasH abolishes this interaction as well as the expression difference of hcp operons between T6SS-active and inactive strains. We find that negative regulation of hcp also occurs in other V. cholerae strains and the pathogens Aeromonas dhakensis and Pseudomonas aeruginosa This Hcp-dependent sensing control is likely an important energy-conserving mechanism that enables T6SS-encoding organisms to quickly adjust T6SS expression and prevent wasteful build-up of its major secreted components in the absence of their efficient export out of the bacterial cell.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Espaço Intracelular/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/química , Citoplasma/metabolismo , Regulação para Baixo , Retroalimentação Fisiológica , Modelos Biológicos , Filogenia , Domínios Proteicos
4.
Cell Rep ; 33(2): 108259, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053336

RESUMO

The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.


Assuntos
Genes Bacterianos , Imunidade/genética , Sistemas de Secreção Tipo VI/genética , Bactérias/genética , Bactérias/imunologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
5.
Cell Rep ; 31(11): 107766, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553162

RESUMO

The type VI secretion system (T6SS) is a lethal microbial weapon that injects a large needle-like structure carrying toxic effectors into recipient cells through physical penetration. How recipients respond to physical force and effectors remains elusive. Here, we use a series of effector mutants of Vibrio cholerae to determine how T6SS elicits response in Pseudomonas aeruginosa and Escherichia coli. We show that TseL, but no other effectors or physical puncture, triggers the tit-for-tat response of P. aeruginosa H1-T6SS. Although E. coli is sensitive to all periplasmically expressed effectors, P. aeruginosa is most sensitive to TseL alone. We identify a number of stress response pathways that confer protection against TseL. Physical puncture of T6SS has a moderate inhibitory effect only on envelope-impaired tolB and rseA mutants. Our data reveal that recipient cells primarily respond to effector toxicity but not to physical contact, and they rely on the stress response for immunity-independent protection.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Imunidade/imunologia , Pseudomonas aeruginosa/metabolismo
6.
Nat Microbiol ; 5(5): 706-714, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32094588

RESUMO

The arms race among microorganisms is a key driver in the evolution of not only the weapons but also defence mechanisms. Many Gram-negative bacteria use the type six secretion system (T6SS) to deliver toxic effectors directly into neighbouring cells. Defence against effectors requires cognate immunity proteins. However, here we show immunity-independent protection mediated by envelope stress responses in Escherichia coli and Vibrio cholerae against a V. cholerae T6SS effector, TseH. We demonstrate that TseH is a PAAR-dependent species-specific effector highly potent against Aeromonas species but not against its V. cholerae immunity mutant or E. coli. A structural analysis reveals TseH is probably a NlpC/P60-family cysteine endopeptidase. We determine that two envelope stress-response pathways, Rcs and BaeSR, protect E. coli from TseH toxicity by mechanisms including capsule synthesis. The two-component system WigKR (VxrAB) is critical for protecting V. cholerae from its own T6SS despite expressing immunity genes. WigR also regulates T6SS expression, suggesting a dual role in attack and defence. This deepens our understanding of how bacteria survive T6SS attacks and suggests that defence against the T6SS represents a major selective pressure driving the evolution of species-specific effectors and protective mechanisms mediated by envelope stress responses and capsule synthesis.


Assuntos
Imunidade , Sistemas de Secreção Tipo VI/imunologia , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Imunidade/genética , Modelos Moleculares , Conformação Proteica , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...